
Planning for Decommissioning – A UK Perspective Ron Smith, International Business Manager

Eastern and Central European Decommissioning Conference June 25-26 2019

The Safe Way is the Only Way

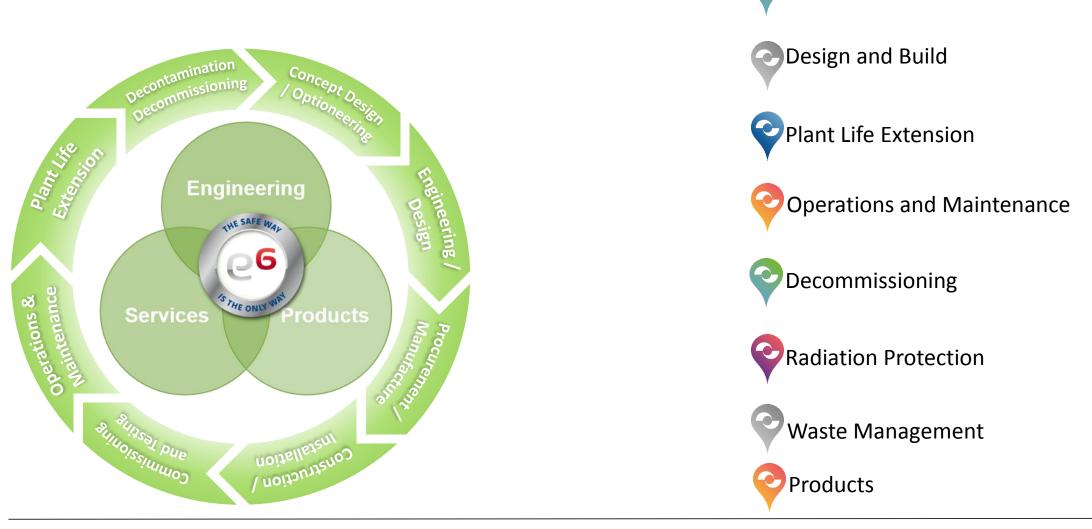
Nuvia UK

Nuvia is located across the UK

Our locations are close to nuclear sites to enable us to respond quickly

We have circa 900 Nuvia personnel based in the UK supporting nuclear projects

Nuvia Group


France Czech Republic Germany Sweden Canada India

Nuvia Group

Supporting the full Lifecycle

Key Areas of Activity:

Consultancy

Decommissioning Organisations in the UK

Government Owned Legacy Sites

Department Responsible

- Business, Energy & Industrial Strategy (BEIS)

Management

- Nuclear Decommissioning Agency (NDA)

Site License Companies / Businesses (owned by NDA)

- Sellafield Ltd
- Magnox Ltd
- Dounreay Site Restoration Ltd
- LLWR Repository Ltd
- Springfields Fuels Ltd
- Capenhurst

Contractors

Operating Power Stations

Station owner and operator - EDF Energy

Government Department Responsible

- Business, Energy & Industrial Strategy (BEIS)

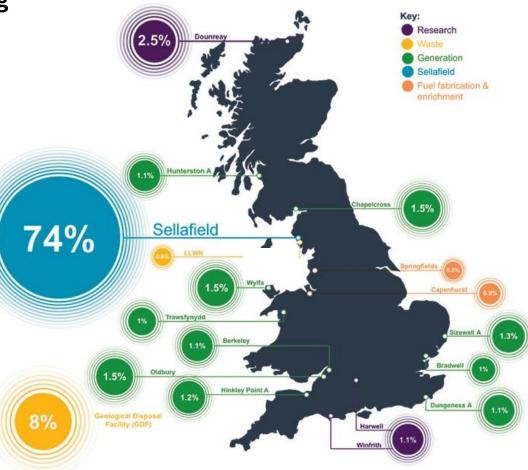
Decommissioning Funding

- Nuclear Liabilities Fund (NLF)

The Main UK Decommissioning Sites

NDA Estate Key Programmes:

PROGRAMMES	SITE(S) SUBSIDs		13/14	14/15	15/16	16/17	17/18	18/19	19/20	20/21	21/
	SUBSIDs										
Transformation (Sellafield)	Sellafield		Deliverin	g the Tran	sformation						
Oxide Fuels - Reprocessing	Sellafield				ng			٠		РОСО	
								Repro Co	nplete		
Metal Fuels (Magnox Operating Programme (MOP))	ting Sellafield, Magnox		Dungene								-
	and Dounreay		Chapelo						;		-
		8	Sizewell						-		-
		DEFUEUNG							•		-
		^	Wylfa Calder H	all				C	ofueling o	omplete	-
			Magnox	reprocessi	ing			٥	efueling o		
Web Level Wests Mensors	ent Sellafield			Eveno	rator D con	struction			Repr	o complet	•
High Level Waste Managen (Inc HAL)	Sellamena				ation of Hi		l louer (H	413			
						n of HAL s					
Magnox Decommissioning Programme	Magnox	C&M			Ben	coloy Vault	s project			_	
		INTO C					Bradwoll	۵			
		8						Сам			
		55									
Pile Fuel Storage Pond	Sellafield			Re	trievals in p	preparation	n for de-we	toring		Retrieve de-wa	ls du terin
Pile Fuel Cladding Silo	Sellafield					Preparatio	04			^	F
							otion of B	EPPS/ DI	Firs	t retrievals	
Dounreav Decommissionin			0		under targe						
Programme (incl Exotics)	Dounreay		Decomm	issioning	uncer targe	it oost oor	reot				
First Generation Magnox Storage Pond	Sellafield		FGMSP	xport pro	ect - rt capabilit				1		
Storage Pond					el retrievals rom pond e	- General	tion of cap	ability			-
			to retney	Self shi	ided boxe ion of ston	s and inte	im safe st	- enc	-		-
			Drasarat		ion of ston	nge capac			m Pond, I)-bay	
			Preparati	on			and othe	r wet bay			
Magnox Swarf Storage Silo	Sellafield		SEP 2					SEP 1		orst retriev	SE
				Box End	apsulation	Plant - C	onstruction				
					acility - Co	nstruction					
			Preparat	ion							
Oxide Fuels - Receipts	Sellafield		AGR fue	receipts f	rom EDFE						1
Higher Activity Wastes (inc I	WM) All SLCs								Commun	ity engage ations	ement
					Preparati	ons	Leun	ch of sitir	site evalu Ig process	ations	
Low Level Waste (LLW)	All SLCs		Deliver ti	ne Joint Lo	w Lovel W	aste Mans	gement Pl	an			


What have we learnt?

Ensure appropriate funds are available for decommissioning

As the reactors were never designed for decommissioning, appropriate costs were not properly considered or saved

At present the UK taxpayers are expected to pay € 250 billion over the next 120 years based on NDA estimates (~2bn/year). Current spend is about €3.7 billion / year

Most of the money associated with this decommissioning is planned to be spent at Sellafield

Timescales

Framework commence June 2019 4 +2+1 Year framework Implementation period extend past end date

Value £250M-£400M over lifetime
Scope : EPC, Decommissioning & Demolition
DSRL's major route to market
Nuvia 1 of 6 framework providers
All contractors are Tier 2
NEC contract options A, B C & E

Dounreay Decommissioning Services Framework

The EDF Energy Nuclear Fleet

Station	Туре	Number of Units	Generation	Closure Date	
Hunterston B	Advanced Gas Cooled Reactor	2	1976	2023	
Hinkley Point B	Advanced Gas Cooled Reactor	2	1976	2023	
Heysham 1	Advanced Gas Cooled Reactor	2	1983	2024	
Hartlepool	Advanced Gas Cooled Reactor	2	1983	2024	
Dungeness B	Advanced Gas Cooled Reactor	2	1983	2028	
Heysham 2	Advanced Gas Cooled Reactor	2	1988	2030	
Torness	Advanced Gas Cooled Reactor	2	1988	2030	
Sizewell B	Pressurised Water Reactor	1	1995	2035	

EDFE UK

11

7 AGR stations and 1 PWR all operating

D+D is funded by NLF backed by UK Government

EDF Energy responsible for D+D though the government has an option to take ownership of stations

Strategy in UK is safestore for graphite reactors (but prompt site clearance for SZB) followed by final deconstruction on ALARP grounds to GDF

AGR sites will start to close 2023 - all in decomm by 2030

Prompt / Deferred Dismantling

- Current strategy Safe Store
- Work needed to achieve Safe Store
- If prompt graphite issue

In house / contracting

- Employ EDF staff local and overseas
- Support from EDF decommissioning business
- Contractors

BEIS / NDA

- Option to take on decommissioning sites
- Management from NDA
- Value of Liabilities Fund

EDF Fleet Decommissioning Key Issues & Stakeholders

EDF Energy and its precursor organisations developed what became a decommissioning strategy with a common strand. This common strand involved some form of Safestore to allow a deferral of reactor dismantling, thus allowing for radioactive decay of the reactor structures and materials.

Decommissioning Timescales are long – circa 100yrs for AGR

The Decommissioning process for an AGR site can be considered in three main phases of work

Key Phase 1—Pre Closure Transition & Defuelling

- Planning
- Characterisation
- Defuelling

Key Phase 2—Site Surveillance, Care & Maintenance

- Removal of non essential infrastructure
- Waste management
- C&M programme

Key Phase 3—Reactor Building Decommissioning & Final Site Clearance

- Reactor core graphite
- Site remediation

AGR Decommissioning Strategy - Key Phases

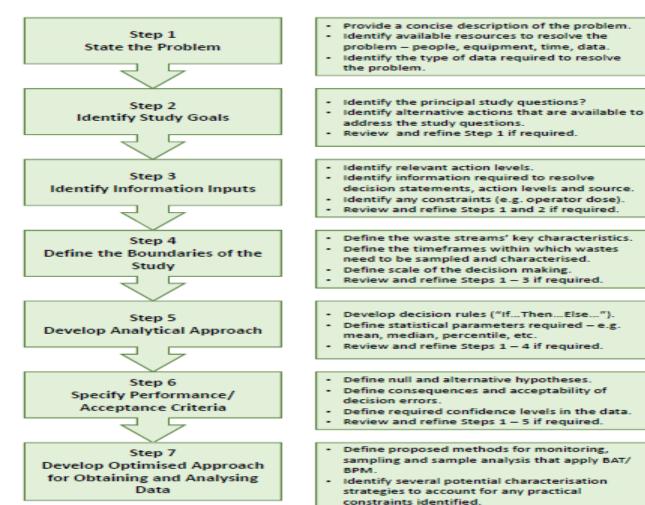
Decommissioning Stages

- Planning
 - Strategy prompt / deferred / hybrid
 - Waste management strategy
 - Characterisation
 - Methodology and Technology
 - Safety case
- Plant closure
 - Defuelling
 - Utility optimisation
- Infrastructure for Decommissioning
 - Civil modifications
 - New facilities
 - Staff

- Implementation
 - BoP
 - Turbine
 - Reactor Island
 - Civil Structures
- Clearance
 - Characterisation
 - Safety case
 - Site release

Kozloduy NPP, Bulgaria Units 1 to 4 undergoing decommissioning

* Nuvia Capabilities



Nuvia Scope in Decommissioning Planning and Implementation

Example of Decommissioning Plan element – Generic Characterisation Plan

The seven steps of the Data Quality Objectives (DQO) process

- Ensure a high level of protection for people and the wider environment;
- Reflect recognised best practice;
- Make the best use of available waste routes, and in particular lowactivity low level waste (LA-LLW)
- and very low level waste (VLLW) disposal routes, where these reflect the BAT (England and Wales) or
- Best Practicable Means (BPM) (Scotland).
- Ensure final waste packages meet the waste acceptance criteria of the recipient storage/
- decommissioning facilities.
- Support disposability and safety cases for wastes processed during decommissioning phases of each
- station:
- Make fully auditable and defensible decisions regarding waste management.

Planning Methodology

It is understood that the requirement can be broadly defined as: the need to collect sufficient data on the radiological, chemical, physical and biological characteristics of each waste group to be able to make robust and defensible disposability cases. These will contain optimised waste management strategies that will meet, if not exceed, national and international standards for radioactive waste management.

Managing Waste in Decommissioning

THE ENERGY ACT 2008

16

Funded Decommissioning Programme Guidance for New Nuclear Power Stations

Scope

Technical authorship of the decommissioning activities and associated costs for Moorsides AP1000s. Acted as the independent verifier of the decommissioning activities and costs for the Wylfa ABWRs.

Challenges

- Avoiding preferential engineering and excessive detail
- Stakeholder management of several interested parties
- Understanding how to cost for waste disposal decades into the future, including waste repositories that are not yet build

Outcome

- Wylfa Project Successfully delivered an independent verification report to support the FDP. The report has been passed to UK Government as part of the FDP
- Moorside Project Successful chapter authorship, cost estimations and risk reviews delivered.

Wylfa & Moorside

Funded Decomissioning Planning (FDP)

Applying experience and knowledge of Decomissioning

Nuclear New Build Programme

December 2011

Scope

- Full Engineer Procure Construct (EPC) and 'operate' project
- Design of the method of decommissioning and demolition – full install and erection of the SCP and decommissioning of the stack
- Full scale off site trials of the SCP system

Challenges

- Contaminated stack from fuel reprocessing
- Safe access and egress to platform
- Working at height and adverse weather
- Plant and equipment hazards

Outcome

- Nuvia brought together a group of specialists to offer best guarantee of safety through all project phases
- Platform erected at off site test facility; installation and initial commissioning at Sellafield site completed.
- Decommissioning is progressing ahead of schedule
- First project in a generation to retire a Category A risk on the Sellafield site by reaching the 47m mark in July 18

Planning and undertaking the decommissioning of the highest stack at Sellafield, in the centre of this congested nuclear site

Conclusion – UK Decommissioning

Government Owned Legacy Sites

The UK has a wide variety of nuclear facilities including closed power stations, reprocessing facilities and research sites undergoing decommissioning.

The UK Government funds the liabilities currently estimated at € billion to complete the decommissioning work.

The NDA is responsible for determining the overall decommissioning strategy to be implemented by the subsidiary businesses and the UK supply chain.

Operating & New Power Stations

There is a legal requirement for decommissioning plans to be developed and approved along with a funding mechanism.

The operator is responsible for the meeting these requirements however the UK Government is committed to provide a final repository for Fuel and ILW.

